•  
  •  
 

Contribución del machine learning al análisis de la repetición escolar en España: un estudio con datos PISA

DOI

10.22550/2174-0909.4014

Abstract

Introduction: The rate of grade repetition is excessively high in Spain despite being a controversial measure. In order to obtain evidence to contribute to reducing it in compulsory education, the present work is an in-depth study of the PISA 2018 context indices that are most closely linked to this phenomenon. Method: With the sample of Spanish students (n = 35 943), we used an automatic machine learning method to select and order the predictors, and multilevel logistic regression (students and centres) to quantify the contribution of each one. Results: For each educational stage we obtained the 30 most significant contextual variables, which explain 65.5% of the grade repetition variance in primary education and almost 55.7% in secondary education. Conclusions: The main indicators are principally at student level, which suggests the suitability of psychoeducational interventions based more on individual support than general policies. This gives rise to potentially more efficient and equitable measures than grade repetition, aimed at, for example, the management of learning time or academic/professional guidance, and predictors with specific differential significance at each stage. Methodologically, the study contributes to improving the specification of predictive models.

Financiación | Funding

This article received no public or private funding.

Referencias | References

Allen, C. S., Chen, Q., Willson, V. L., & Hughes J. N. (2009). Quality of design moderates effects of grade retention on achievement: A metaanalytic, multi-level analysis. Educational Evaluation and Policy Analysis, 31 (4), 480-99. https://doi.org/10.3102/0162373709352239

Arroyo, D., Constante-Amores, A., & Asensio, I. (2019). La repetición de curso a debate: un estudio empírico a partir de PISA 2015 [Debate on grade repetition: An empirical study from PISA 2015]. Educación XX1, 22 (2), 69-92. https://doi.org/10.5944/educxx1.22479

Arroyo, D., Constante-Amores, A., Castro, M., & Navarro, E. (2024a). Eficacia escolar y alto rendimiento del alumnado español en PISA 2018: un enfoque de machine learning [School effectiveness and high reading achievement of spanish students in PISA 2018: A machine learning approach]. Educación XX1, 27 (2), 223-251. https://doi.org/10.5944/educxx1.38634

Arroyo, D., Constante-Amores, A., Gil, P., & Carrillo, P. J. (2024b). Student well-being and mathematical literacy performance in PISA 2018: A machine-learning approach. Educational Psychology, 44 (3), 340-357. https://doi.org/10.1080/01443410.2024.2359104

Asensio, I., Carpintero, E., Expósito, E., & López, E. (2018). ¿Cuánto oro hay entre la arena? Minería de datos con los resultados de España en PISA 2015 [How much gold is in the sand? Data mining with Spain’s PISA 2015 results]. Revista Española de Pedagogía, 76 (270), 225-245. https://doi.org/10.22550/REP76-2-2018-02

Battistin, E., & Schizzerotto, A. (2019). Threat of grade retention, remedial education and student achievement: Evidence from upper secondary schools in Italy. Empirical Economics, 56, 651- 678. https://doi.org/10.1007/s00181-018-1443-6

Cameron, A. C., & Windmeijer, F. A. (1997). An R-squared measure of goodness of fit for some common nonlinear regression models. Journal of Econometrics, 77 (2), 329-342. https://doi.org/10.1016/S0304-4076(96)01818-0

Carabaña, J. (2013). Repetición de curso y puntuaciones PISA, ¿cuál causa cuál? [Grade repetition and PISA scores, which causes which?] In Instituto Nacional de Evaluación Educativa (Ed.), PISA 2012: Programa para la evaluación de los alumnos, informe español (volumen II: análisis secundario) [PISA 2012: Programme for international student assessment, Spanish report (volume II: secondary analysis)]. INEE.

Choi, A., Gil, M., Mediavilla, M., & Valbuena, J. (2018). Predictors and effects of grade repetition. Revista de Economía Mundial, (48), 21-42. Constante, A., Florenciano, E., Navarro, E., & Fernández, M. (2021). Factores asociados al abandono universitario [Factors associated with university dropout]. Educación XX1, 24 (1), 17-44. https://doi.org/10.5944/educxx1.26889

Cordero, J., Manchón, C., & Simancas, R. (2014). La repetición de curso y sus factores condicio- nantes en España [Repetition and explanatory factors in Spain]. Revista de Educación, (365), 12-37. https://doi.org/10.4438/1988-592X-RE-2014-365-263

Ferla, J., Valcke, M., & Cai, Y. (2009). Academic self-efficacy and academic self-concept: Reconsidering structural relationships. Learning and Individual Differences, 19 (4), 499-505. https://doi.org/10.1016/j.lindif.2009.05.004

Fernández-Lasarte, O., Ramos-Díaz, E., & Axpe, I. (2019). Rendimiento académico, apoyo social percibido e inteligencia emocional en la universidad [Academic performance, perceived social support and emotional intelligence at the university]. European Journal of Investigation in Health, 9 (1), 39-49.

Gamazo, A., & Martínez-Abad, F. (2020). An exploration of factors linked to academic performance in PISA 2018 through data mining techniques. Frontiers in Psychology, 11. https://doi.org/10.3389/fpsyg.2020.575167

García-Pérez, J., Hidalgo, M., & Robles, J. (2014). Does grade retention affect students’ achievement? Some evidence from Spain. Applied Economics, 46 (12), 1373-1392. https://doi.org/10.1080/00036846.2013.872761

Gaviria, J. L., & Castro, M. (2005). Modelos jerárquicos lineales [Linear hierarchical models]. La Muralla.

González-Nuevo, C., Postigo, Á., García-Cueto, E. Menéndez-Aller, Á., Muñiz, J., Cuesta, M., Álvarez-Díaz, M., & Fernández-Alonso, R. (2023). Grade retention impact on academic self-concept: a longitudinal perspective. School Mental Health, 15, 600-610. https://doi.org/10.1007/ s12310-023-09573-2

Gorostiaga, A., & Rojo-Álvarez, J. L. (2016). On the use of conventional and statistical-learning techniques for the analysis of PISA results in Spain. Neurocomputing, 171, 625-637. https://doi.org/10.1016/j.neucom.2015.07.001

Hattie, J. (2017). Aprendizaje visible para profesores. Maximizando el impacto en el aprendizaje [Visible learning for teachers. Maximising learning impact]. Paraninfo.

Hornstra, L., Majoor, M., & Peetsma, T. (2017). Achievement goal profiles and developments in effort and achievement in upper elementary school. British Journal of Educational Psychology, 87 (4), 606-629. https://doi.org/10.1111/bjep.12167

Ikeda, M., & García, E. (2014). Grade repetition: A comparative study of academic and non-academic consequences. OECD Journal: Economic Studies, (1), 269-315. https://doi.org/10.1787/ eco_studies-2013-5k3w65mx3hnx

Jimerson, S. R. (2001). Meta-analysis of grade retention research: new directions for practice in the 21st century. School Psychology Review, 30 (3), 420-437. http://dx.doi.org/10.1080/02796015.2001.12086124

Jimerson, S. R., & Ferguson, P. (2007). A longitudinal study of grade retention: Academic and behavioral outcomes of retained students through adolescence. School psychology quarterly, 22 (3), 314. Kılıç, D., Aşkın, Ö. E., & Öz, E. (2017). Identifying the classification performances of educational data mining methods: A case study for TIMSS. Kuram ve Uygulamada Egitim Bilimleri, 17 (5), 1605-1623. https://jestp.com/menuscript/index.php/estp/article/view/426

Kiray, S. A., Gok, B., & Bozkir, A. S. (2015). Identifying the factors affecting science and mathematics achievement using data mining methods. Journal of Education in Science, Environment and Health, 1 (1), 28-48.

Lee, V. E. (2000). Using hierarchical linear modeling to study social contexts: The case of school effects. Educational Psychologist, 35 (2), 125-141. https://doi.org/10.1207/S15326985EP3502_6

Liu, X., & Ruiz, M. E. (2008). Using data mining to predict K-12 students’ performance on large-scale assessment items related to energy. Journal of Research in Science Teaching, 45 (5), 554-573. https://doi.org/10.1002/tea.20232

Lopes, J., Oliveira, C. & Costa, P. (2022). Determinantes escolares y de los estudiantes en el rendimiento lector: un análisis multinivel con estudiantes portugueses. Revista de Psicodidáctica, 27, 29-37. http://doi.org/10.1016/j.psicod.2021.05.001

López, E., Expósito, E., Carpintero, E., & Asensio, I. (2018). ¿Qué nos dice PISA sobre la enseñanza y el aprendizaje de las ciencias? Una aproximación a través de árboles de decisión [What does PISA tell us about science teaching and learning? A decision tree approach]. Revista de Educación, (382), 133-161.

López, F., & García, I. (2020). A vueltas con la equidad en educación: una aproximación empírica en la perspectiva de las consecuencias [The equity in education: An empirical approach in the perspective of consequences]. Universidad Camilo José Cela. http://hdl.handle.net/20.500.12020/901

López, L., González-Rodríguez, D., & Vieira, M. J. (2023). Variables que afectan la repetición en la educación obligatoria en España [Variables affecting repetition in compulsory education in Spain]. Revista Electrónica de Investigación Educativa, 25, 1-15. https://doi.org/10.24320/redie.2023.25.e17.4942

López-Rupérez, F., García-García, I., & Expósito- Casas, E. (2021). La repetición de curso y la graduación en Educación Secundaria Obligatoria en España. Análisis empíricos y recomendaciones políticas [Grade repetition and graduation in compulsory secondary education in Spain. Empirical analysis and policy recommendations]. Revista de Educación, (394), 325-353. https://doi.org/10.4438/1988-592X-RE-2021-394-510

Marsh, H. W., Parker, P. D., & Pekrun, R. (2018). Three paradoxical effects on academic self-concept across countries, schools, and students. European Psychologist, 24 (3), 231-242. http://doi.org/10.1027/1016-9040/a000332

Mathys, C., Véronneau, M., & Lecocq, A. (2019). Grade retention at the transition to secondary school: Using propensity score matching to identify consequences on psychosocial adjustment. Journal of Early Adolescence, 39 (1), 97-133. https://doi.org/10.1177/0272431617735651

Martínez-Abad, F., & Chaparro, A. A. (2017). Data-mining techniques in detecting factors linked to academic achievement. School Effectiveness and School Improvement, 28 (1), 39-55. https://doi.org/10.1080/09243453.2016.1235591

Martínez-Abad, F., Gamazo, A., & Rodríguez- Conde, M. J. (2020). Educational data mining: Identification of factors associated with school effectiveness in PISA assessment. Studies in Educational Evaluation, 66, 100875. https://doi.org/10.1016/j.stueduc.2020.100875

Nieto-Isidro, S., & Martínez-Abad, F. (2023). Repetición de curso y su relación con variables socioeconómicas y educativas en España [Grade retention and its relationship with socioeconomic and educative variables in Spain]. Revista de Educación, 1 (402), 207-236. https://doi.org/10.4438/1988-592X-RE-2023-402-600

Ministerio de Educación y Formación Profesional. (2019). PISA 2018. Programa para la evaluación internacional de los estudiantes. Informe español (vol. I) [PISA 2018. Programme for international student assessment. Spanish report (vol. I)]. https://www.educacionyfp.gob.es/inee/evaluaciones-internacionales/pisa/pisa-2018/pisa-2018-informes-es.html

Ministerio de Educación y Formación Profesional. (2022). Sistema estatal de indicadores de la educación 2022 [State system of education indicators 2022]. https://www.libreria.educacion.gob.es/libro/sistema-estatal-de-indicadores-de-la-educacion-2022_184171/

Niemi, H. (2015). Teacher professional development in Finland: Towards a more holistic approach. Psychology, Society and Education, 7 (3), 279-294. OCDE (2019). PISA 2018 assessment and analytical framework. https://doi.org/10.1787/b25e-fab8-en

OCDE (2020). PISA 2018 results (volume VI). Are students ready to thrive in an interconnected world? https://www.oecd.org/publications/pisa-2018-results-volume-vi-d5f68679-en.htm

Pardo, M., & Ruiz, M. (2013). Análisis de datos en ciencias sociales y de la salud III [Data analysis in health and social sciences III]. Síntesis.

Peixoto, F., Monteiro, V., Mata, L., Sanches, C., Pipa, J., & Navas, L. (2016). To be or not to be retained… That’s the question! Retention, self-esteem, self-concept, achievement goals, and grades. Frontiers in Psychology, 7, (1550). https://doi.org/10.3389/fpsyg.2016.01550

Raschka, S. (2015). Python machine learning. Packt.

Rhodes, J., Thomas, J. M., & Liles, A. R. (2018). Predictors of grade retention among children in an elementary school truancy intervention. Journal of At-Risk Issues, 21 (1), 1-10.

Rivero, G. (2011). Análisis de datos incompletos en ciencias sociales [Incomplete data analysis in social sciences]. CIS.

Rodríguez-Rodríguez, D. (2022). Repetición de curso, rendimiento académico y variables motivacionales en Educación Secundaria Obligatoria: un estudio longitudinal [Grade retention, academic performance and motivational variables in compulsory secondary education: A longitudinal study]. Psicothema, 34 (3), 429-436. https://doi.org/10.7334/psicothema2021.582

Rosenthal, R., & Rosnow, R. L. (2008). Essentials of behavioral research: Methods and data analysis. McGraw-Hill

Sarkar, D., Bali, R., & Sharma, T. (2018). Practical machine learning with Python. A problem-solvers guide to building real-world intelligent systems. Apress.

Schwerdt, G., West, M. R., & Winters, M. A. (2017). The effects of testbased retention on student outcomes over time: Regression discontinuity evidence from Florida. Journal of Public Economics, 152, 154-169. https://doi.org/10.1016/j.jpubeco.2017.06.004

Seabra, D. A., & Ferrão, M. E. (2016). Repetência e indisciplina: Evidências de Brasil e Portugal no PISA 2012 [Grade repetition and indiscipline: Evidence from Brazil and Portugal in Pisa, 2012]. Cadernos de Pesquisa, 46 (161), 614-636. https://publicacoes.fcc.org.br/cp/article/view/3669

Tapia, J. G., & Álvarez, C. A. (2022). La repetición de curso en educación secundaria en clave organizacional [Grade repetition in secondary education in an organizational perspective]. Avances en Supervisión Educativa, (38). https://doi.org/10.23824/ase.v0i38.772

Urbina, A. B., & De la Calleja, J. (2017). Breve revisión de aplicaciones educativas utilizando minería de datos y aprendizaje automático [Brief review of educational applications using data mining and machine learning]. Revista Electrónica de Investigación Educativa, 19 (4), 84-96. https://doi.org/10.24320/redie.2017.19.4.1305

Valbuena, J., Mediavilla, M., Choi, Á., & Gil, M. (2021). Effects of grade retention policies: A literature review of empirical studies applying causal inference. Journal of Economic Surveys, 35 (2), 408-451. https://doi.org/10.1111/joes.12406

Van Canegem, T., Van Houtte, M., & Demanet, J. (2021). Grade retention and academic self-concept: A multilevel analysis of the effects of schools’ retention composition. British Educational Research Journal, 47 (5), 1340-1360. https://doi.org/10.1002/berj.3729

Warren, J. R., Hoffman, E., & Andrew, M. (2014). Patterns and trends in grade retention rates in the United States, 1995-2010. Educational Researcher, 43 (9), 433-443. https://dx.doi.org/10.3102/0013189X14563599

Author Biography

Alexander Constante-Amores. Bachelor’s Degree in Pedagogy and Master’s Degree in Educational Research from the Universidad Complutense de Madrid (UCM). He is currently completing the Doctoral Programme in Education at the UCM. He is a lecturer at the Universidad Camilo José Cela and the Universidad Europea de Madrid, where he teaches subjects in the areas of Statistics, Biostatistics and Research Methods. He was an intern at the Instituto Nacional de Estadística [Spanish National Statistics Institute] and he is a member of the research group Medida y Evaluación de Sistemas Educativos (MESE) [Measurement and Evaluation of Educational Systems]. His line of research focuses on the evaluation of educational systems.

https://orcid.org/0000-0003-2024-9615

Delia Arroyo-Resino. Lecturer at the Universidad Complutense de Madrid. She holds an International Doctorate with an Outstanding Award from the Department of Research and Diagnostic Methods in Education for the Universidad Complutense de Madrid. She is a member of the research group Medida y Evaluación de Sistemas Educativos (MESE).

https://orcid.org/0000-0002-3784-7745

María Sánchez-Munilla. Bachelor’s Degree in Pedagogy and a Master’s Degree in Methodologies in Behavioural Health Sciences at the Universidad Nacional de Educación a Distancia (UNED). She is currently completing the UCM Doctoral Programme in Education on a predoctoral contract named Formación del Profesorado Universitario (FPU) [University Teacher Training]. She is a member of the research group Medida y Evaluación de Sistemas Educativos (MESE) and the Servicio de Evaluación y Diagnóstico en Educación (SEDE) [Educational Evaluation and Diagnosis Service] of the Faculty of Education at the UCM.

https://orcid.org/0000-0001-6689-7170

Inmaculada Asensio-Muñoz. Doctorate with an outstanding award from the Universidad Complutense de Madrid. Senior lecturer in the area of Research and Diagnostic Methods in Education, at the Department of Research and Psychology in Education in the Faculty of Education at this University. She has extensive teaching experience in pedagogy and teacher training, both at undergraduate and master’s or doctorate level. She is a member of the research group Medida y Evaluación de Sistemas Educativos (MESE) and, as an expert in educational research methodology, during her professional career, she has worked on several funded projects on research and innovation related to this subject. Her publications focus on improving education and learning, and, in general, on the role of teaching and guidance.

https://orcid.org/0000-0003-3523-570X

Licencia Creative Commons | Creative Commons License

Creative Commons Attribution-NonCommercial 4.0 International License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Included in

Education Commons

Share

COinS

Palabras clave | Keywords

PISA, grade repetition, machine learning, contextual variables, multilevel logistic regression, compulsory education.