•  
  •  
 

DOI

10.22550/2174-0909.3933

Abstract

The development of computational thinking has become one of the educational priorities in several countries around the world. In this article, two experiences are described in which two block programming tools are used. The first experience only used BlocksCAD, while the second added the use of Blockly and the work on some mathematical algorithms in a maths classroom. The number of participants in the experience was twenty-eight in the group that only used Blocky and thirteen in the group that combined the use of both tools, all of them of the third year of secondary education (between 14 and 15 years old) in a school in Spain. The results show that, although the use of Blocks- CAD alone allows an increase in the development of CT, if other resources such as Blockly are also used in the mathematics classroom, the effect is multiplied. In addition, considering the satisfaction results of the participants in the experience, together with the possibility of printing their own creations through 3D modelling (a fact claimed by the students themselves), this encourages us to continue using both tools and even to try to combine them with other tools and to design experiences that encompass entire academic courses or, at least, entire trimesters.

Referencias | References

Alonso, R. (2021). Blockly games y su influencia en el desarrollo del pensamiento computacional para los estudiantes de quinto año de la U. E. Carlos María de la Condamine [Blockly games and their influence on the development of computational thinking for fifth year students at U. E. Carlos María de la Condamine] [Master’s thesis]. Repositorio Digital UNACH, Universidad Nocional de Chimborazo. http://dspace.unach.edu.ec/handle/51000/8310

Andersen, L. (2014). Visual-spatial ability: Important in STEM, ignored in gifted education. Roeper Review, 36 (2), 114-121. 10.1080/02783193.2014.884198

Beltrán-Pellicer, P., Rodríguez-Jaso, C., & Muñoz-Escolano, J. M. (2020). Introduciendo BlocksCAD como recurso didáctico en matemáticas [Introducing BlocksCAD as a teaching resource in mathematics]. Suma, 93, 39-48. https://bit.ly/3Ah2aka

Beltrán-Pellicer, P., & Muñoz-Escolano, J. M. (2021). Una experiencia formativa con BlocksCAD con futuros docentes de matemáticas en secundaria [A training experience using BlocksCAD with future high school teachers of mathematics]. Didacticae, (10), 71-90. 10.1344/did.2021.10.71-90

Berdik, C. (2017). Kids code their own 3D creations with new blocks-based design program. Tech Directions; Ann Arbor, 76 (9), 23-24.

Blikstein, P., Harel, I., Machover, T., y Upitis, R. (2017, 26 de enero). Rethinking school [video]. Thinking about Thinking about Seymour. MIT Media Lab, Cambridge, Massachusetts, EE. UU. https://www.media.mit.edu/videos/seymour-2017-01-26/

Bull, G., Haj-Hariri, H., Atkins, R., & Moran, P. (2015). An educational framework for digital manufacturing in schools. 3D Printing and Additive Manufacturing, 2 (2), 42-49. https://doi.org/10.1089/3dp.2015.0009

Chao, J., Po, H. Chang, Y., & Yao, L. (2017). The study of 3D printing project course for indigenous senior high school students in Taiwan. In T. H. Meen, S. D. Prior, & A. D. Kin-Tak (Eds.), Proceedings of the IEEE International Conference on Advanced Materials for Science and Engineering (IEEE-ICAMSE 2016), Tainan, Taiwan, 12-13 November 2016 (pp. 68-70). Institute of Electrical and Electronics Engineers. 10.1109/ ICAMSE.2016.7840234

Chytas, C., Diethelm I., & Tsilingiris, A. (2018). Learning programming through design: An analysis of parametric design projects in digital fabrication labs and an online makerspace. In Proceedings of 2018 IEEE Global Engineering Education Conference (EDUCON2018) (pp. 1978-1987). Institute of Electrical and Electronics Engineers. 10.1109/EDU-CON.2018.8363478

Çoban, E., & Korkmaz, Ö. (2021). An alternative approach for measuring computational thinking: Performance-based platform. Thinking Skills and Creativity, 42, 100929. https://doi.org/10.1016/j.tsc.2021.100929

Corum, K., & Garofalo, J. (2015). Using digital fabrication to support student learning. 3D Printing and Additive Manufacturing, 2 (2), 50-55. 10.1089/3dp.2015.0008

Cox, F. T., González, D., Magreñán, Á. A., & Orcos, L. (2022). Enseñanza de estadística descriptiva mediante el uso de simuladores y laboratorios virtuales en la etapa universitaria [Teaching of descriptive statistics using simulators and virtual laboratories at university level]. Bordón: Revista de pedagogía, 74 (4), 103-123. 10.13042/BORDON.2022.94121

Craddock, I. L. (2015). Makers on the move: A mobile makerspace at a comprehensive public high school. Library Hi Tech, 33 (4), 497-504. 10.1108/LHT-05-2015-0056

Csizmadia, A., Curzon, P., Dorling, M., Humphreys, Simon, Ng, T., Selby, C., & Woollard, J. (2015). Computational thinking. A guide for teachers. Computing at School. https://eprints.soton.ac.uk/424545/

Dapozo, G. N., Greiner, C. L., Petris, R. H., Espíndola, M. C., & Company, A. M. (2017). Promoción del pensamiento computacional para favorecer la formación de recursos humanos en disciplinas STEM [Promoting computational thinking to foster human resource development in STEM disciplines]. In WICC 2017. XIX Workshop de Investigadores en Ciencias de la Computación (pp. 737-742). Instituto Tecnológico de Buenos Aires.

De Figueiredo, M. P. S., De Oliveira, E. G., & Filho, G. A. De A. C. (2019). Intervenção em turmas de jovens e adultos numa escola da rede pública do Recife, multidisciplinaridade e uso da ferramenta Blockly Games: um relato de experiência [Intervention in youth and adult classes in a public school in Recife, multidisciplinarity and the use of the Blockly Games tool: An experience report]. In Anais do IV Congresso sobre Tecnologias na Educação (pp. 561-567). SBC. 10.5753/ctrle.2019.8932

Ford, S., & Minshall, T. (2019). Where and how 3D printing is used in teaching and education. Additive Manufacturing, 25, 131-150. 10.1016/j.addma.2018.10.028

Frankovic, I., Hoic-Bozic, N., & Prskalo, L. N. (2018). Serious games for learning programming concepts. In Proceedings 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (p. 354). Institute of Electrical and Electronics Engineers. 10.1109/ICSMC.2012.6378001

Fraser, N. (2015). Ten things we’ve learned from Blockly. In F. Turbak, D. Bau, J. Gray, C. Kelleher, & J. Sheldon (Eds.), 2015 IEEE Blocks and Beyond Workshop (Blocks and Beyond) (pp. 49-50). Institute of Electrical and Electronics Engineers. 10.1109/BLOCKS.2015.7369000

Freire, P. (1993). Pedagogy of the oppressed. Continuum

Fuentes-Cabrera, A., Parra-González, M. E., López-Belmonte, J., & Segura-Robles, A. (2020). Learning mathematics with emerging methodologies - The escape room as a case study. Mathematics, 8 (9), 1586, 1-14. 10.3390/math8091586

Glister, P. (1997). Digital literacy. Wiley.

Grover, S., & Pea, R. D. (2018). Computational thinking: A competency whose time has come. In S. Sentance, E. Barendsen, & C. Schulte (Eds.), Computer science education: Perspectives on teaching and learning in schools (pp. 19-38). Bloomsbury Academic.

Hansen, A. K., Iveland, A., Dwyer, H. Harlow D. B., & Franklin, D. (2015). Programming science digital stories: Computer science and engineering design in the science classroom. Science and Children, 53 (3), 60-64.

Howland, K., Good, J., Robertson, J., & Manches, A. (2019). Special issue on computing thinking and coding in childhood. International journal of child-computer interaction, 19, 93-95. https://doi.org/10.1016/j.ijcci.2018.11.001

Huang, B., & Hew, K. F. (2021). Using gamification to design courses. Educational Technology & Society, 24 (1), 44-63.

Huleihil, H. (2017). 3D printing technology as innovative tool for math and geometry teaching applications. IOP Conference Series: Materials Science and Engineering, 164, 012023. http://doi.org/10.1088/1757-899X/164/1/012023

Jiang, B. & Li, Z. (2021). Effect of Scratch on computational thinking skills of Chinese primary school students. Journal of Computers in Education, 8, 505-525. 10.1007/s40692-021-00190-z

Jiménez, C., Arís, N., Ruiz, Á. A. M., & Orcos, L. (2020). Digital escape room, using Genial.Ly and a breakout to learn algebra at secondary education level in Spain. Education Sciences, 10 (10), 1-14. 10.3390/EDUCSCI10100271

Jocius, R., O’Byrne, W. I., Albert, J., Joshi, D., Robinson, R., & Andrews, A. (2021). Infusing computational thinking into STEM teaching. Educational Technology & Society, 24 (4), 166-179.

Karaahmetoğlu, K., & Korkmaz, Ö. (2019). The effect of project-based arduino educational robot applications on students’ computational thinking skills and their perception of basic STEM skill levels. Participatory Educational Research (PER), 6 (2). http://dx.doi.org/10.17275/per.19.8.6.2

Kaufmann, H., Schmalstieg, D., & Wagner, M. (2000). Construct3D: A virtual reality application for mathematics and geometry education. Education and Information Technologies, 5, 263-276. 10.1023/A:1012049406877

Keith, K., Sullivan, F., & Pham, D. (2019). Roles, collaboration, and the development of computational thinking in a robotics learning environment. In S. C. Kong, & H. Abelson (Eds.), Computational thinking education (pp. 223-245). Springer. https://doi.org/10.1007/978-981-13-6528-7_13

Korenova, L. (2017). GeoGebra in teaching of primary school mathematics. International Journal for Technology in Mathematics Education, 24 (3), 155-160.

Kostakis, V., Niaros, V., & Giotitsas, C. (2015). Open source 3D printing as a means of learning: An educational experiment in two high schools in Greece. Telematics and Informatics, 32 (1), 118-128. 10.1016/j.tele.2014.05.001

Lee, I., Grover, S., Martin, F., Pillai, S., & Malyn-Smith, J. (2020). Computational thinking from a disciplinary perspective: Integrating computational thinking in K-12 science, technology, engineering and mathematics education. Journal of Science Education and Technology, 29 (1), 10.1007/s10956-019-09803-w

Lütolf, G. (2013). Using 3D printers at school: the experience of 3drucken.ch. In E. Canessa, C. Fonda, M. Zennaro (Eds.), Lowcost 3D printing for science, education and sustainable development (pp. 149-158). The Abdus Salam International Centre for Theoretical Physics (ICTP).

Magreñán, Á. A., Jiménez, C., Orcos, L., & Roca, S. (2022). Teaching calculus in the first year of an engineering degree using a digital escape room in an online scenario. Computer Applications in Engineering Education. 10.1002/CAE.22568

Meadows, M. L., & Caniglia, J. C. (2019). Using PhET simulations in the mathematics classroom. The Mathematics Teacher, 112 (5), 386-389. 10.5951/mathteacher.112.5.0386

Medina, L., Jaquez, J., Noguez, J., & García, R. M. (2013). Newton Gymlab: gimnasio-laboratorio virtual de física y matemática [Newton Gymlab: virtual physics and mathematics gymnasium-laboratory]. Instituto Tecnológico y Estudios Superiores de Monterrey. http://hdl.handle.net/11285/621356

Miedijensky, S., & Tal, T. (2016). Reflection and assessment for learning in science enrichment courses for the gifted. Studies in Educational Evaluation, 50, 1-13. 10.1016/j.stueduc.2016.05.001

Morris,S.B.(2008).Estimatingeffectsizesfrompretest-posttest-control group designs. Organizational Research Methods, 11 (2), 364-386. 10.1177/1094428106291059

Morris, S. B., & DeShon, R. P. (2002). Combining effect size estimates in meta-analysis with repeated measures and independent-groups designs. Psychological methods, 7 (1), 105-125. 10.1037/1082-989x.7.1.105

Orcos, L., & Magreñán, Á. A. (2018). The hologram as a teaching medium for the acquisition of STEM contents. International Journal of Learning Technology, 13 (2), 163-177. https://doi.org/10.1504/IJLT.2018.092097

Orcos, L., Cordero, A., Jordán, C., Magreñán, Á. A., Sanabria, E., & Torregrosa, J. R. (2020). Reverse teaching as a methodological strategy for mathematics learning in higher education. En Á. A. Magreñán (Ed.), Didactics of mathematics: New trends and experiences (pp. 153-180). Nova Science Publishers.

Orcos, L., Jiménez, C., & Magreñán, Á. A. (2022). Itinerarios de aprendizaje para trabajar la probabilidad matemática en futuros maestros en un escenario online con Deck.Toys [Learning itineraries to work mathematic probability with future teachers in an online scenario with Deck.Toys tool]. RIED: Revista Iberoamericana de Educación a Distancia, 25 (2), 195-218. 10.5944/ried.25.2.31748

Prendes-Espinosa, M. P., & Cartagena, F. C. (2021). Tecnologías avanzadas para afrontar el reto de la innovación educativa [Advanced technologies to face the challenge of educational innovation]. RIED, Revista Iberoamericana de Educación a Distancia, 24 (1), 35-53. 10.5944/ried.24.1.28415

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N. Eastmond, E., Brennan, K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., & Kafai, Y. (2009). Scratch: Programming for all. Communications of the ACM, 52 (11), 60. https://doi.org/10.1145/1592761.1592779

Robinson, A., Dailey, D., Hughes, G., & Cotabish, A. (2014). The effects of a science-focused STEM intervention on gifted elementary students’ science knowledge and skills. Journal of Advanced Academics, 25 (3), 189-213. https://doi. org/10.1177/1932202X14533799

Román, M. (2015). Test de pensamiento computacional [Computational thinking test]. Retrieved on January 15, 2024 from http://goo.gl/IYEKMB

Román-González, M., Pérez-González, J. C., & Jiménez-Fernández, C. (2015, October 14-16). Test de pensamiento computacional: diseño y psicometría general [Computational thinking test: design & general psychometry] [conference paper]. III Congreso Internacional sobre Aprendizaje, Innovación y Competitividad (CINAIC 2015), Madrid, España.

Roscoe, J. F., Fearn, S., & Posey, E. (2014). Teaching computational thinking by playing games and building robots. In Proceedings of 2014 International Conference on Interactive Technologies and Games iTAG 2014 (pp. 9-12). The Institute of Electrical and Electronics Engineers. https://doi.ieeecomputersociety. org/10.1109/iTAG.2014.15

San Cristóbal, M. S., Martín, D., Asencio, E. N., & Figueroa, J. T. (2017). Flipped classroom y didáctica de las matemáticas en la formación online de maestros de educación infantil [Flipped classroom and mathematics didactics in online education of early childhood teachers]. Revista Electrónica Interuniversitaria de Formación del Profesorado, 20 (3), 1-14.

Sanders, M. (2009). STEM, STEM education, STEMmania. The Technology Teacher. https://www.teachmeteamwork.com/files/sanders.istem.ed.ttt.istem.ed.def.pdf

Schroth, S. T., & Helfer, J. A. (2017). Gifted & green: Sustainability/environmental science investigations that promote gifted children’s learning. Gifted Child Today, 40 (1), 14-28. https://doi.org/10.1177/1076217516675903.

Sen, C., Ay, Z. S., & Kiray, S. A. (2021). Computational thinking skills of gifted and talented students in integrated STEM activities based on the engineering design process: The case of robotics and 3D robot modelling. Thinking Skills and Creativity, 42, 100931. 10.1016/j.tsc.2021.100931

Sengupta, P., Kinnebrew, J. S. Basu, S., Biswas G., & Clark, D. (2013). Integrating computational thinking with K-12 science education using agent-based computation: A theoretical framework. Education and Information Technologies, 18 (2), 351-380. 10.1007/s10639-012-9240-x

Stansell, A., & Tyler-Wood, T. (2016). Digital fabrication for STEM projects: A middle school example. In J. M. Spector, C. Tsai, D. G. Sampson, Kinshuk, R. Huang, N. Chen, & P. Resta (Eds.), Proceedings of the IEEE 16th International Conference on Advanced Learning Technologies (pp. 483-485). The Institute of Electrical and Electronics Engineers. 10.1109/ICALT.2016.44

Steed, M., & Wevers, M. (2016). 3D printing & the design process: A pilot project between university student teachers and grade four students. In Proceedings of EdMedia 2016 - World Conference on Educational Media and Technology (pp. 354-359). Association for the Advancement of Computing in Education.

Tang, X., Yin, Y., Hadad, R., & Zhai, X. (2020). Assessing computational thinking: A systematic review of empirical studies. Computers & Education, 148, 103798. 10.1016/j.compedu.2019.103798

Thomas, K. W., & Velthouse, B. A. (1990). Cognitive elements of empowerment: An “interpretive” model of intrinsic task motivation. Academy of Management Review, 15 (4), 666-681. https://psycnet.apa.org/doi/10.2307/258687

Tikva, C., & Tambouris, E. (2021). Mapping computational thinking through programming in K-12 education: A conceptual model based on a systematic literature review. Computers and Education, 162, 104083. 10.1016/j.compedu.2020.104083

Ting-Chia H., Shao-Chen C., & Yu-Ting H. (2018). How to learn and how to teach computational thinking: Suggestions based on a review of the literature. Computers & Education, 126, 296-310. 10.1016/j.compedu.2018.07.004

Tissenbaum, M., Sheldon, J., & Abelson, H. (2019). From computational thinking to computational action. Envisioning computing education that both teaches and empowers. Communications of the ACM, 62 (3), 34-36. 10.1145/3265747

Tofel-Grehl, C., & Callahan, C. M. (2017). STEM high schools teachers’ belief regarding STEM student giftedness. Gifted Child Quarterly, 61 (1), 40-51. https://doi.org/10.1177/0016986216673712

Vargas-Quesada, B., Zarco, C., & Cordón, O. (2023). Mapping the situation of educational technologies in the Spanish university system using social network analysis and visualization. International Journal of Interactive Multimedia and Artificial Intelligence, 8 (2), 190-201. 10.9781/ijimai.2021.09.004

Wang, T. H., Lim, K. Y., Lavonen, J., & Clark-Wilson, A. (2019). Maker-centred science and mathematics education: Lenses, scales and contexts. International Journal of Science and Mathematics Education, 17 (1), 1-11. 10.1007/s10763-019-09999-8

Wei, X., Cheng, I. L., Chen, N. S., & Yang, X., Liu, Y., Dong, Y., Zhai, X., & Kinshuk. (2020). Effect of the flipped classroom on the mathematics performance of middle school students. Educational Technology Research and Development, 68, 1461-1484. 10.1007/s11423-020-09752-x

Wijers, M., Jonker, V., & Drijvers, P. (2010). MobileMath: Exploring mathematics outside the classroom. ZDM, The International Journal on Mathematics Education, 42 (7), 789-799. https://doi.org/10.1007/s11858-010-0276-3

Wilensky, U., Brady C. E., & Horn, M. S. (2014). Fostering computational literacy in science classrooms. Communications of the ACM, 57 (8), 24-28. 10.1145/2633031

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49 (3), 33-35. 10.1145/1118178.1118215

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 366 (1881), 3717–3725. 10.1098/rsta.2008.0118

Zapata-Ros, M. (2015). Pensamiento computacional: una nueva alfabetización digital [Computational thinking: A new digital literacy]. RED-Revista de Educación a Distancia, 46 (4). https://doi.org/10.6018/red/46/4

Zulnaidi, H., Oktavika, E., & Hidayat, R. (2020). Effect of use of GeoGebra on achievement of high school mathematics students. Education and Information Technologies, 25, 51-72.

Author Biography

Ángel-Alberto Magreñán-Ruiz. He has a doctorate (cum laude and special award) in Mathematics, a certificate in teaching, a licentiate degree in Mathematics and a technical engineering degree in Business Computing from Universidad de La Rioja. He is currently an Associate Professor in the Mathematics Teaching Area of the Mathematics and Computing Department at Universidad de La Rioja.

https://orcid.org/0000-0002-6991-5706

Rubén-Arístides González-Crespo. He is a doctor of Engineering in Computer Engineering and has a degree in Engineering in Industrial Organisation from Universidad Pontificia de Salamanca. He also holds a master’s in Project Management and Administration and a master’s in Web Engineering from the same university, as well as a diploma in International Studies from Sociedad de Estudios Internacionales. He is a Professor at Universidad Internacional de La Rioja.

https://orcid.org/0000-0001-5541-6319

Cristina Jiménez-Hernández. She has a degree in Mathematics from Universidad del País Vasco. She is currently studying for a PhD at Universidad Politécnica de Valencia while working in a secondary school in Spain.

https://orcid.org/0000-0002-0189-4910

Lara Orcos-Palma. She has a doctorate (cum laude and special award) from Universidad Politécnica de Valencia. She holds a licentiate degree in Chemistry from Universidad de La Rioja and a licentiate degree in Biochemistry from Universidad de Salamanca. In addition, she studied a master’s in Teacher Training at Universidad de La Rioja and a master’s in Chemical Science and Technology with Spain’s Universidad Nacional de Educación a Distancia (UNED). She is currently an Associate Professor in the Mathematics Teaching Area of the Mathematics and Computing Department at Universidad de La Rioja.

https://orcid.org/0000-0001-8138-551X

Licencia Creative Commons | Creative Commons License

Creative Commons Attribution-NonCommercial 4.0 International License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Included in

Education Commons

Share

COinS

Palabras clave | Keywords

computational thinking, problems, mathematics, mathematical modelling, technologies, BlocksCAD, Blockly, Secondary, Spain, education, 3D printing, group comparison, satisfaction