•  
  •  
 

DOI

10.22550/REP79-3-2021-07

Abstract

Advances in neuroimaging techniques have significantly enhanced our ability to study differences in cognitive efficiency in children and adolescents. However, these studies have traditionally used intelligence quotient (IQ) as the sole measure of cognitive ability. Talent development experts are increasingly drawing attention to the major limitations of exclusively using this measure to identify the variables associated with giftedness, in terms of the validity of the construct they intend to measure and in respect of the measurement’s reliability and stability. The aim of this study is to analyse whether the construct of intelligence on which recent neuroimaging studies are based, the type of instrument used to quantify giftedness and the corresponding neurobiological results are consistent with the advances made by differential pedagogy in respect of the multidimensional construct of intelligence. To this end, a systematic review both of neuroimaging research that seeks to explain the neural correlates of giftedness in children and adolescents, on the one hand, and of research focussing more prominently on the field of giftedness development, on the other, has been carried out. The findings suggest that brain networks and dynamics associated with creativity and motivation may have a bearing on cognitive performance variability. However, as the majority of neuroimaging studies continue to use IQ as the sole measure of intellectual ability, most of the data produced by these studies cannot be generalised for the purpose of determining what differential pedagogy experts refer to as “giftedness”.

Please, cite this article as follows: Gómez-León, M. I. (2022). Alta capacidad intelectual desde la neuroimagen y la pedagogía diferencial. ¿Hablamos de lo mismo? | Giftedness from the perspective of neuroimaging and differential pedagogy. Are we talking about the same thing? Revista Española de Pedagogía, 80 (283), 451-473. 10.22550/REP80-3-2022-02

Referencias | References

American Educational Research Association, American Psychological Association y National Council on Measurement and Education (2014). Standards for educational and psychological testing. American Educational Research Association.

Aubry, A., & Bourdin, B. (2018). Short forms of Wechsler scales assessing the intellectually gifted children using simulation data. Frontiers in psychology, 9, 830. 10.3389/ fpsyg.2018.00830

Barbey, A. K. (2018). Network Neuroscience Theory of human intelligence. Trends in cognitive sciences, 22 (1), 8-20. 10.1016/j.tics.2017.10.001

Bathelt, J., Johnson, A., Zhang, M., & Astle, D. E. (2019). The cingulum as marker of individual differences in neurocognitive development. Scientific Reports, 9 (1), 2281. https:// doi.org/10.1038/s41598-019-38894-z

Burgaleta, M., Johnson, W., Waber, D. P., Colom, R., & Karama, S. (2014a). Cognitive ability changes and dynamics of cortical thickness development in healthy children and adolescents. Neu- roImage, 84, 810-819. 10.1016/j. neuroimage.2013.09.038

Byington E., & Felps W. (2010). Why do IQ scores predict job performance? An alternative, sociological explanation. Research in Organizational Behavior, 30 (C), 175-202. https://doi. org/10.1016/j.riob.2010.08.003

Castelló, T. A. (2008). Bases intelectuales de la excepcionalidad, un esquema integrador [Intellectual foundations of exceptionality, an integrative framework]. revista española de pedagogía, 240, 203-220.

Clayden, J. D., Jentschke, S., Muñoz, M., Cooper, M., Chadwick, M. J., Banks, T., Clark, C. A., & Vargha-Khadem, F. (2012). Normative development of white matter tracts: similarities and differences in relation to age, gender, and intelligence. Cerebral cortex, 22 (8), 1738-1747. 10.1093/cercor/bhr243

Colom R., Abad F. J., García L. F., & Juan-Espinosa, M. (2002). Educación, coeficiente intelectual de escala completa de Wechsler y g [Educa- tion, Wechsler’s Full Scale IQ, and g]. Intelli- gence, 30 (5), 449-462. 10.1016/ S0160-2896(02)00122-8

Fjell, A. M., Westlye, L. T., Amlien, I., Tamnes, C. K., Grydeland, H., Engvig, A., Espeseth, T., Reinvang, I., Lundervold, A. J., Lundervold, A., & Walhovd, K. B. (2015). High-expanding cortical regions in human development and evolution are related to higher intellectual abilities. Cerebral Cortex, 25 (1), 26-34. https://doi. org/10.1093/cercor/bht201

Gagné, F. (2015). From genes to talent: the DMGT/ CMTD perspective. Revista de Educación, 368, 12-37. 10.4438/1988-592X- RE-2015-368-289

Gignac, G. E., & Bates T. C. (2017). Brain volume and intelligence: The moderating role of intelligence measurement quality. Intelligence, 64, 18-29. 10.1016/j.intell.2017.06.004

Gómez-León,M.I(2019).Psicobiología de las altas capacidades. Una revisión actualizada [Psychobiology of giftedness. An updated review]. Psiquiatría biológica, 26 (3), 105-112. https://doi. org/10.1016/j.psiq.2019.09.001

Gómez-León, M. I. (2020a). La psicobiología de la motivación en el desarrollo de las altas capacidades intelectuales. Revisión bibliográfica [Psychobiology of motivation in the development of giftedness. Bibliographical review]. Psiquiatría biológica, 27 (2),

47-53. 10.1016/j.psiq.2020.01.003 Gómez-León, M. I. (2020b). Bases psicobiológicas

de la creatividad en los niños con altas capacidades [Psychobiological bases of creativity in gifted children]. Psiquiatría biológica, 27 (1), 28-33. 10.1016/j.psiq.2020.01.004

Gómez-León, M. I. (2020c). Desarrollo de la alta capacidad durante la infancia temprana [High capacity development in early childhood]. Papeles del Psicólogo, 41 (2), 147-158. https://doi. org/10.23923/pap.psicol2020.2930

Gómez-León, M. I. (2020d). Psicobiología de la alta capacidad intelectual y el trastorno por déficit de atención con hiperactividad. Diagnóstico diferencial [Psychobiology of giftedness and attention deficit hyperactivity disorder. Differential diagnosis]. Psiquiatría biológica, 27 (3), 96-104. 10.1016/j.psiq.2020.06.003 Goriounova, N. A., & Mansvelder, H. D. (2019). Genes, cells and brain areas of intelligence [Genes, células y áreas cerebrales de la inteligencia]. Frontiers in human neuroscience, 13, 44. 10.3389/fnhum.2019.00044

Jiménez, J. E., Artiles, C., Rodríguez, C., García, E., Camacho, J., & Moraes, J. (2008). Creatividad e inteligencia: ¿dos hermanas gemelas insepara- bles? [Creativity and intelligence: inseparable twin sisters?] revista española de pedagogía, 240, 261-282.

Karama, S., Colom, R., Johnson, W., Deary, I. J., Haier, R., Waber, D. P., Lepage, C., Ganjavi, H., Jung, R., Evans, A. C., & Brain Development Cooperative Group (2011). Cortical thickness correlates of specific cognitive performance accounted for by the general factor of intelligence in healthy children aged 6 to 18. NeuroImage, 55 (4), 1443-1453. 10.1016/j. neuroimage.2011.01.016

Kenett, Y. N., Medaglia, J. D., Beaty, R. E., Chen, Q., Betzel, R. F., Thompson-Schill, S. L., & Qiu, J. (2018). Driving the brain towards creativity and intelligence: A network control theory analysis. Neuropsychologia, 118 (Pt A), 79-90. https://doi. org/10.1016/j.neuropsychologia.2018.01.001

Khundrakpam, B. S., Lewis, J. D., Reid, A., Karama, S., Zhao, L., Chouinard-Decorte, F., Evans, A. C., & Brain Development Cooperative Group (2017). Imaging structural covariance in the development of intelligence. NeuroImage, 144, 227-240. 10.1016/j.neuroimage.2016.08.041

Kim, D. J., Davis, E. P., Sandman, C. A., Sporns,

O., O’Donnell, B. F., Buss, C., & Hetrick, W. P. (2016). Children’s intellectual ability is associated with structural network integrity. NeuroImage, 124, 550-556. 10.1016/ j.neuroimage.2015.09.012

Kocevar, G., Suprano, I., Stamile, C., Hannoun, S., Fourneret, P., Revol, O., Nusbaum, F., & Sappey-Marinier, D. (2019). Brain structural connectivity correlates with fluid intelligence in children: A DTI graph analysis. Intelligence, 72, 67-75. 10.1016/j.intell.2018.12.003

Koenis, M., Brouwer, R. M., Swagerman, S. C., van Soelen, I., Boomsma, D. I., & Hulshoff Pol, H. (2018). Association between structural brain network efficiency and intelligence increases during adolescence. Human brain mapping, 39 (2), 822-836. 10.1002/ hbm.23885

Lange, N., Froimowitz, M. P., Bigler, E. D., Lain- hart, J. E., & Brain Development Cooperative Group (2010). Associations between IQ, total and regional brain volumes, and demography in a large normative sample of healthy children and adolescents. Developmental neuropsychology, 35 (3), 296-317. 10.1080/

87565641003696833

Langeslag, S. J., Schmidt, M., Ghassabian, A., Jaddoe, V. W., Hofman, A., van der Lugt, A., Verhulst, F. C., Tiemeier, H., & White, T. J. (2013). Functional connectivity between parietal and frontal brain regions and intelligence in young children: the Generation R study. Human brain mapping, 34 (12), 3299-3307. 10.1002/hbm.22143

MacDonald, P. A., Ganjavi, H., Collins, D. L., Evans, C., & Karama, S. (2014). Investigating the relation between striatal volume and IQ. Brain imaging and behavior, 8 (1), 52-59. https://doi. org/10.1007/s11682-013-9242-3

Margolis, A., Bansal, R., Hao, X., Algermissen, M., Erickson, C., Klahr, K. W., Naglieri, J. A., & Peterson, B. S. (2013). Using IQ discrepancy scores to examine the neural correlates of spe- cific cognitive abilities. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33 (35), 14135-14145. https://doi. org/10.1523/JNEUROSCI.0775-13.2013

Menary, K., Collins, P. F., Porter, J. N., Muetzel, R.,

Olson, E. A., Kumar, V., Steinbach, M., Lim, K. O., & Luciana, M. (2013). Associations between cortical thickness and general intelligence in children, adolescents and young adults. Intelli- gence, 41 (5), 597-606. 10.1016/j. intell.2013.07.010

Navas-Sánchez, F. J., Alemán-Gómez, Y., Sánchez-Gonzalez, J., Guzmán-De-Villoria, J. A., Franco, C., Robles, O., Arango, C., & Desco, M. (2014). White matter microstructure correlates of mathematical giftedness and intelligence quotient. Human brain mapping, 35 (6), 2619-2631. 10.1002/hbm.22355

Nolla, G. C., Pareja, E. M. D., Tudela, J. M. O., & de la Rosa, A. L. (2017). Análisis y valoración de la situación actual del alumnado con altas capacidades en España [Analysis and assessment of the current situation of high ability students in Spain]. Revista de Educación Inclusiva, 5 (2), 129-140. https://revistaeducacioninclusiva.es/index.php/REI/article/ view/238/232

Nusbaum, F., Hannoun, S., Kocevar, G., Stamile, C., Fourneret, P., Revol, O., & Sappey-Marinier, D. (2017). Hemispheric differences in white matter microstructure between two profiles of children with high intelligence quotient vs. controls: A tract-based spatial statistics study. Frontiers in neuroscience, 11, 173. 10.3389/fnins.2017.00173

Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elmagarmid, A. (2016). Rayyan — a web and mobile app for systematic reviews. Systematic Reviews, 5, 210. 10.1186/ s13643-016-0384-4

Pfeiffer, S. I. (2020). Giftedness and talent development in children and youth. In P. Ward, J. Schraagen, J. Gore y E. M. Roth (Eds.), The Oxford Handbook of Expertise (pp. 103- 127). Oxford University Press.

Renzulli, J. S. (2021). El papel del profesor en el desarrollo de habilidades cognitivas complejas en personas jóvenes [The teacher’s role in developing higher level thinking skills in young people]. revista española de pedagogía, 79 (278), 13-32. 10.22550/REP79-1-2021-01

Sastre-Riba, S., & Castelló, A. (2017). Fiabilidad y estabilidad en el diagnóstico de la alta capacidad intelectual [Reliability and stability in the diagnosis of high intellectual capacity]. Revista de Neurología, 64 (1), 51-58. https://doi. org/10.33588/rn.64S01.2017028

Sastre-Riba, S., & Ortiz, T. (2018). Neurofuncionalidad ejecutiva: estudio comparativo en las altas capacidades [Executive neurofunctionality: A comparative study in high intellectual abilities]. Revista de Neurología, 66 (1), 51-56. 10.33588/rn.66S01.2018026

Schnack, H. G., van Haren, N. E., Brouwer, R. M., Evans, A., Durston, S., Boomsma, D. I., Kahn, S., & Hulshoff Pol, H. E. (2015). Changes in thickness and surface area of the human cortex and their relationship with intelligence [Cambios en el grosor y la superficie del córtex humano y su relación con la inteligencia]. Cerebral cortex, 25 (6), 1608-1617. https://doi. org/10.1093/cercor/bht357

Silverman, L. K., & Gilman, B. J. (2020). Best practices in gifted identification and assessment: Lessons from the WISC-V. Psychology in the Schools, 57 (10), 1569-1581. https://doi. org/10.1002/pits.22361

Solé-Casals, J., Serra-Grabulosa, J. M., Romero-Garcia, R., Vilaseca, G., Adan, A., Vilaró, N., Bargalló, N., & Bullmore, E. T. (2019). Structural brain network of gifted children has a more integrated and versatile topology. Brain structure & function, 224 (7), 2373-2383. 10.1007/s00429-019-01914-9

Sripada, C., Angstadt, M., Taxali, A., Clark, D. A., Greathouse, T., Rutherford, S., Dickens, J. R., Shedden, K., Gard, A. M., Hyde, L. W., Weigard, A., & Heitzeg, M. (2021). Brain-wide functional connectivity patterns support general cognitive ability and mediate effects of socioeconomic status in youth. Translational Psychiatry, 11 (1), 571. 10.1038/s41398-021-01704-0

Sternberg, R. J. (2012). Intelligence. Diálogos en neurociencia clínica, 14 (1), 19-27. 10.31887/DCNS.2012.14.1/rsternberg

Sternberg, R. J., & O’Hara (2005). Creatividad e inteligencia [Creativity and intelligence]. CIC. Cuadernos de Información y Comunicación, 10, 113-149. https://www.redalyc.org/articulo. oa?id=93501006

Sugiarti, R., Suhariadi, F., & Erlangga, E. (2018). The chance of gifted intelligent students’ success in career. Indian Journal of Public Health Research and Development, 9 (9), 277. https:// doi.org/10.5958/0976-5506.2018.01009.4

Suprano, I., Delon-Martin, C., Kocevar, G., Stamile, C., Hannoun, S., Achard, S., Badhwar, A., Fourneret, P., Revol, O., Nusbaum, F., & Sappey-Marinier, D. (2019). Topological mod- ification of brain networks organization in children with high intelligence quotient: A resting-state fmri study. Frontiers in Human Neuroscience, 13, 241. 10.3389/ fnhum.2019.00241

Tamnes, C. K., Fjell, A. M., Østby, Y., Westlye, L. T., Due-Tønnessen, P., Bjørnerud, A., & Walhovd, B. (2011). The brain dynamics of intellectual development: waxing and waning white and gray matter. Neuropsychologia, 49 (13), 3605-3611. 10.1016/j.neuropsychologia.2011.09.012

Tourón, J. (2020). Las altas capacidades en el sistema educativo español: reflexiones sobre el concepto y la identificación [Gifted education in Spanish education system]. Revista de Investigación Educativa, 38 (1), 15-32.

Turkheimer, E., Haley, A., Waldron, M., D’Onofrio, B., & Gottesman, I. I. (2003). Socioeconomic status modifies heritability of IQ in young children. Psychological science, 14 (6), 623-628. 10.1046/j.0956-7976.2003. psci_1475.x

Waber, D. P., Forbes, P. W., Almli, C. R., Blood, E. A., & Brain Development Cooperative Group (2012). Four-year longitudinal performance of a population-based sample of healthy children on a neuropsychological battery: The NIH MRI study of normal brain development. Journal of the International Neuropsychological Society: JINS, 18 (2), 179-190. 10.1017/ S1355617711001536

Wang, L., Wee, C. Y., Suk, H. I., Tang, X., & Shen, D. (2015). MRI-based intelligence quotient (IQ) estimation with sparse learning. PloS one, 10 (3), e0117295. 10.1371/journal. pone.0117295

Wechsler, D. (1943). Non-intellective factors in general intelligence. Journal of Abnormal and Social Psychology, 38, 101-103. 10.1037/h0060613

Westerhausen, R., Friesen, C. M., Rohani, D. A., Krogsrud, S. K., Tamnes, C. K., Skranes, J. S., Håberg, A. K., Fjell, A. M., & Walhovd, K. (2018). The corpus callosum as anatom- ical marker of intelligence? A critical exami- nation in a large-scale developmental study. Brain structure & function, 223 (1), 285-296. 10.1007/s00429-017-1493-0

Westlye, L. T., Walhovd, K. B., Dale, A. M., Bjørnerud, A., Due-Tønnessen, P., Engvig, A., Grydeland, H., Tamnes, C. K., Ostby, Y., & Fjell, A. M. (2010). Life-span changes of the human brain white matter: Diffusion tensor imaging (DTI) and volumetry. Cerebral cortex, 20 (9), 2055-2068. 10.1093/cercor/bhp280

Author Biography

María Isabel Gómez-León is a postgraduate Lecturer of the Master’s Degree in Special Education, the Master’s Degree in Early Care and Child Development, the Master’s Degree in Neuropsychology and Education and the Master’s Degree in Neuromarketing at the Universidad Internacional de La Rioja and of the Master’s Degree in Educational Processes of Teaching and Learning, the Master’s Degree in Attention to Diversity and the Master’s Degree in Advanced Studies in Giftedness and Talent Management; and a graduate professor of the Degree in Early Childhood Education and Primary Education at Universidad Antonio de Nebrija; and a postgraduate Lecturer of the Master’s Degree in Advanced Teaching Competences and the Master’s Degree in Psycho-pedagogical Orientation and Intervention at Universidad Camilo José Cela; and Director and postgraduate professor of the Master’s Degree in Early Intervention at Universidad Francisco de Vitoria.

https://orcid.org/0000-0001-7466-5441

Licencia Creative Commons | Creative Commons License

Creative Commons Attribution-NonCommercial 4.0 International License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Share

COinS

Palabras clave | Keywords

differential pedagogy, identification, intelligence quotient, neuroimaging