Psychometric properties of the Social Network Addiction Questionnaire (SNAQ) for undergraduates
Propiedades psicométricas del cuestionario de adicción a las redes sociales (ARS) a población universitaria
Arminda Suárez-Perdomo, Yaritza Garcés-Delgado, Edgar García-Álvarez, & Zuleica Ruiz-Alfonso
DOI: https://doi.org/10.22550/REP81-2-2023-06
Social network addiction in young people has been extensively studied and associated with multiple factors. Among the scales designed to measure this, the 24-item version of the Social Network Addiction Questionnaire (SNAQ) is one of the most widely used. This study analyses the psychometric properties of the Spanish version adapted to undergraduates. The content and construct validity of the scale was explored using the Rasch model and a confirmatory factor analysis. The data categorisation structure, construct dimensionality, model fit, subject and item reliability, Wright Map structure, and differential item functioning (DIF) were specifically analysed. 1,809 students from 24 Spanish universities participated. The results indicate that the SNAQ presents good reliability and dimensionality, and a good model fit; however, elements in need of improvement are appreciated mainly in the proposed Likert scale, in the development of new items that measure the extremes of addiction to social network sites and in the wording of one item. With respect to factor analysis, three factors were obtained thatcoincide with the original construct. With the improvements that have been observed through validation, the questionnaire could confidently be used to measure the construct in the university population. The instrument fills an important gap in the identification of addictive behaviours in the use of social networks, which could lead to a subsequent intervention involving undergraduates.
Please, cite this article as follows: Suárez-Perdomo, A., Garcés-Delgado, Y., García-Álvarez, E. y Ruiz-Alfonso, Z. (2023). Propiedades psicométricas del cuestionario de adicción a las redes sociales (ARS) a población universitaria | Psychometric properties of the Social Network Addiction Questionnaire (SNAQ) for undergraduates. Revista Española de Pedagogía, 81 (285), 361-379. https://doi.org/10.22550/REP81-2-2023-06
- Keywords:
- addiction
- Rasch model
- social networks
- undergraduates
American Psychiatric Association (2008). DSm-iv-tr - Breviario: criterios diagnósticos [DSm-iv-tr - Brief: Diagnostic criteria]. Elsevier España. https://books.google.es/books/about/DSM_IV_TR.html?hl=es&id=vA3NmKjhFAsC&redir_esc=y
Andreassen, C. S. (2015). Online social network site addiction: A comprehensive review. Current Addiction Reports, 2 (2), 175-184. https://doi.org/10.1007/s40429-015-0056-9
Andreassen, C. S., Torsheim, T., & Pallesen, S. (2014). Predictors of use of social network sites at work-a specific type of cyberloafing. Journal of Computer-Mediated Communication, 19 (4), 906-921. https://doi.org/10.1111/jcc4.12085
Andrich, D. (1988). Rasch Models for measurement: SAGE Publications. Sage Publications.
Arquero, J. L., & Romero-Frías, E. (2013). Using social network sites in higher education: An experience in business studies. Innovations in Education and Teaching International, 50 (3), 238-249. https://doi.org/10.1080/14703297.2012.760772
Austin-McCain, M. (2017). An examination of the association of social media use with the satisfaction with daily routines and healthy lifestyle habits for undergraduate and graduate students. The Open Journal of Occupational Therapy, 5 (4), 6. https://doi.org/10.15453/2168-6408.1327
Azizi, S. M., Soroush, A., & Khatony, A. (2019). The relationship between social networking addiction and academic performance in Iranian students of medical sciences: A cross-sectional study. BMC psychology, 7 (1), 1-8. https://doi.org/10.1186/s40359-019-0305-0
Azpilicueta, A. E., Cupani, M., Ghío, B., Morán, V. E., & Garrido, S. J. (2019). Adaptación mediante el modelo de Rasch de tres medidas para estimar la decisión e indecisión de carrera y la ansiedad decisional [Adaptation using the Rasch model of three measures to estimate career decision and indecision and anxiety]. Perspectivas en Psicología, 16 (1), 26-37. http://rpsico.mdp.edu.ar/handle/123456789/1108
Baker, D. A., & Algorta, G. P. (2016). The relationship between online social networking and depression: A systematic review of quantitative studies. Cyberpsychology, Behavior, and Social Networking, 19 (11), 638-648. https://doi.org/10.1089/cyber.2016.0206
Balakrishnan, V., & Shamim, A. (2013). Malaysian Facebookers: Motives and addictive behaviours unraveled. Computers in Human Behavior, 29 (4), 1342-1349. https://doi.org/10.1016/j.chb.2013.01.010
Banjanin, N., Banjanin, N., Dimitrijevic, I., & Pantic, I. (2015). Relationship between internet use and depression: Focus on physiological mood oscillations, social networking and online addictive behavior. Computers in Human Behavior, 43, 308-312. https://doi.org/10.1016/j.chb.2014.11.013
Bond, T. G., & Fox, C. M. (2012). Why measurement is fundamental. Applying the Rasch Model: Fundamental Measurement in the Human Sciences. Routledge.
Buglass, S. L., Binder, J. F., Betts, L. R., & Underwood, J. D. (2017). Motivators of online vulnerability: The impact of social network site use and FOMO. Computers in Human Behavior, 66, 248-255. https://doi.org/10.1016/j.chb.2016.09.055
Busalim, A. H., Masrom, M., & Zakaria, W. N. B. W. (2019). The impact of Facebook addiction and self-esteem on students’ academic performance: A multi-group analysis. Computers & Education, 142, 103651. https://doi.org/10.1016/j.compedu.2019.103651
Çam, E., & Isbulan, O. (2012). A new addiction for teacher candidates: Social networks. Turkish Online Journal of Educational Technology-TOJET, 11 (3), 14-19. https://www.learntechlib.org/p/55773/
Cao, X., Masood, A., Luqman, A., & Ali, A. (2018). Excessive use of mobile social networking sites and poor academic performance: Antecedents and consequences from stressor-strain-outcome perspective. Computers in Human Behavior, 85, 163- 174. https://doi.org/10.1016/j.chb.2018.03.023
Charlton, J. P., & Danforth, I. D. (2007). Distinguishing addiction and high engagement in the context of online game playing. Computers in human behavior, 23 (3), 1531-1548. https://doi.org/10.1016/j.chb.2005.07.002
Escurra, M., & Salas, E. (2014). Construcción y validación del cuestionario de adicción a redes sociales (ARS) [Construction and validation of the questionnairy of Social Networking Addiction (SNA)]. Liberabit. Revista de Psicología, 20 (1), 73-91. http://www.scielo.org.pe/pdf/liber/v20n1/a07v20n1.pdf
Fioravanti, G., Dèttore, D., & Casale, S. (2012). Ado-lescent Internet addiction: Testing the association between self-esteem, the perception of Internet attributes, and preference for online social interactions. Cyberpsychology, Behavior, and Social Networking, 15 (6), 318-323. https://doi.org/10.1089/cyber.2011.0358
Fossum, I. N., Nordnes, L. T., Storemark, S. S., Bjorvatn, B., & Pallesen, S. (2014). The association between use of electronic media in bed before going to sleep and insomnia symptoms, daytime sleepiness, morningness, and chronotype. Behavioral Sleep Medicine, 12 (5), 343-357. https://doi.org/10.1080/15402002.2013.819468
García-Álvarez, E. (2015). Relaciones y capacidades interorganizativas: un enfoque de Supply Chain Management (SCM) en red [Interorga-nizational relationships and capabilities: a networked approach to Supply Chain Management (SCM)] [Doctoral dissertation, Universidad de La Laguna]. RIULL Repositorio Institucional. http://riull.ull.es/xmlui/handle/915/2398
Gómez, M., Roses, S., & Farias, P. (2012). El uso académico de las redes sociales en universitarios [The academic use of social networks among university students]. Comunicar, 38 (19), 131- 138. https://doi.org/10.3916/C38-2012-03-04
Jacobsen, W. C., & Forste, R. (2011). The wired generation: Academic and social outcomes of electronic media use among university students. Cyberpsychology, Behavior, and Social Networking, 14 (5), 275-280. https://doi.org/10.1089/cyber.2010.0135
Kong, Q., Lai-Ku, K. Y., Deng, L., & Yan-Au, A. C. (2021). Motivation and perception of Hong Kong university students about social media news. Comunicar, 29 (67). https://doi.org/10.3916/C67-2021-03
Kuss, D. J., & Griffiths, M. D. (2017). Social networking sites and addiction: Ten lessons learned. International journal of environmental research and public health, 14 (3), 311. https://doi.org/10.3390/ijerph14030311
Linacre, J. M. (2002). Optimizing rating scale cate-gory effectiveness. Journal of Applied Mea-surement, 3 (1), 85-106. https://pubmed.ncbi.nlm.nih.gov/11997586/
Linacre, J. M. (2009). A user’s guide to Winsteps-ministep: Rasch-model computer programs. Program manual 3.68. 0. IL. https://ia800607.us.archive.org/23/items/B-001-003-730/winsteps.pdf
Linacre, J. M. (2015). A user’s guide to winsteps ministep: Rasch-model computer programs. https://www.scienceopen.com/document?vid=9923a1a4-3164-4056-b230-bada789f854e
Linacre, J. M. (2018). A user’s guide to Winsteps 3.70. 0: Rasch-model computer programs. Winsteps. https://www.researchgate.net/publication/238169941_A_User''s_Guide_to_Winsteps_Rasch-Model_Computer_Program
Liu, C., & Ma, J. (2020). Social media addiction and burnout: The mediating roles of envy and social media use anxiety. Current Psychology, 39 (6), 1883- 1891. https://doi.org/10.1007/s12144-018-9998-0
Mushtaq, A. J., & Benraghda, A. (2018). The effects of social media on the undergraduate students’ academic performances. Library Philosophy and Practice, 4 (1). https://digitalcommons.unl.edu/libphilprac/1779/
O’Keeffe, G. S., & Clarke-Pearson, K. (2011). The impact of social media on children, adolescents, and families. Pediatrics, 127 (4), 800-804. https://doi.org/10.1542/peds.2011-0054
Oreja-Rodríguez, J. R. (2015). Mediciones, posicionamientos y diagnósticos competitivos [Mea-surements, positioning and competitive diagnostics]. Fundación FYDE-CajaCanarias.
Organic Law 3/2018, of December 5, on Personal Data Protection and guarantee of digital rights. Spanish Official State Gazette, 294. https://www.boe.es/eli/es/lo/2018/12/05/3/con
Pertegal-Vega, M. Á., Oliva-Delgado, A., & Rodríguez-Meirinhos, A. (2019). Systematic review of the current state of research on Online Social Networks: Taxonomy on experience of use. Comunicar, 27 (60), 81-91. https://doi.org/10.3916/C60-2019-08
Rasch, G. (1980). Probabilistic models for intelligence and attainment tests (expanded edition). University of Chicago Press.
Seabrook, E. M., Kern, M. L., & Rickard, N. S. (2016). Social networking sites, depression, and anxiety: A systematic review. JMIR mental health, 3 (4), e5842. https://doi.org/10.2196/mental.5842
Sekaran, U. (2000). Research Methods for Business: A Skill-building Approach. John Wiley & Sons.
Suárez-Perdomo, A., Ruiz-Alfonso, Z., & Garcés-Delgado, Y. (2022). Profiles of undergraduates’ networks addiction: Difference in academic procrastination and performance. Computers & Education, 181, 104459. https://doi.org/10.1016/j.compedu.2022.104459
Turel, O., & Serenko, A. (2012). The benefits and dangers of enjoyment with social networking websites. European Journal of Information Systems, 21 (5), 512-528. https://doi.org/10.1057/ejis.2012.1
Wilson, K., Fornasier, S., & White, K. M. (2010). Psychological predictors of young adults’ use of social networking sites. Cyberpsychology, Behavior, and Social Networking, 13 (2), 173-177. https://doi.org/10.1089/cyber.2009.0094
Winsteps (n. d.). Winsteps. https://www.winsteps.com/winsteps.htm
Wolniczak, I., Cáceres-DelAguila, J. A., Palma- Ardiles, G., Arroyo, K. J., Solís-Visscher, R., Paredes-Yauri, S., Mego-Aquije, K., & Bernabe- Ortiz, A. (2013). Association between Facebook dependence and poor sleep quality: a study in a sample of undergraduate students in Peru. PloS One, 8 (3), e59087. https://doi.org/10.1371/journal.pone.0059087
Wright, B. D. (2002). Number of person or item strata: (4*Separation + 1)/3. Rasch Measurement Transactions, 16, 888. https://www.rasch.org/rmt/rmt163f.htm
Wright, B. D., & Stone, M. H. (2003). Five steps to science: Observing, scoring, measuring, analyzing, and applying. Rasch Measurement Transactions, 17 (1), 912-913. https://www.rasch.org/rmt/rmt171j.htm
Xanidis, N., & Brignell, C. M. (2016). The association between the use of social network sites, sleep quality and cognitive function during the day. Computers in Human Behavior, 55, 121- 126. https://doi.org/10.1016/j.chb.2015.09.004
Zamora Araya, J. A., Smith Castro, V., Montero Rojas, E., & Moreira Mora, T. E. (2018). Advantages of the Rasch model for analysis and interpretation of attitudes: The case of the benevolent sexism subscale. Revista Evaluar, 18 (3). https://doi.org/10.35670/1667-4545.v18.n3.22201
Arminda Suárez-Perdomo holds a doctorate in Developmental Psychology and is a Assistant Professor at the Department of Didactics and Educational Research at the Universidad de La Laguna. Her lines of research focus on the evaluation of programmes to promote positive parenting in virtual environments for experiential learning, analysis of digital parenting skills, as well as problematic internet use among undergraduates and its possible influence on the behaviour of procrastination and educational goals.
https://orcid.org/0000-0002-6755-5284
Yaritza Garcés-Delgado holds a doctorate in Education which received the qualification of international doctorate and is an Assistant Professor in the Area for Research and Diagnosis Methods in Education at the Department of Didactics and Educational Research at the Universidad de La Laguna (Spain). She is a research associate in the Grupo Universitario de Formación y Orientación Integrada (GUFOI) (University Group for Integrated Training and Guidance) and the research and innovation group EDULLAB (Laboratorio de Educación y Nuevas Tecnologías) (Education and New Technologies Laboratory), both officially recognised research groups at the Universidad de La Laguna. She is a member of and the regional representative for the Asociación Interuniversitaria de Investigación Pedagógica (AIDIPE) (Interuniversity Association for Pedagogical Research) in the Canary Islands. Her lines of research focus on the development of methods and lines of research applied to education, academic and career guidance for students and the application of technologies to education.
https://orcid.org/0000-0003-3471-1014
Edgar García-Álvarez holds a doctorate in Business Structure. He specialises in university management, knowledge transfer and business innovation. His areas of academic knowledge are (1) business structure and administration, (2) statistical methodology based on the Rasch Model Measurement Theory (TMR) and (3) the agri-food sector. He is currently administrator of the Escuela Politécnica Superior de Ingeniería (EPSI) at the Universidad de La Laguna and a lecturer-tutor at the Universidad Nacional de Educación a Distancia (UNED).
https://orcid.org/0000-0003-3008-9571
Zuleica Ruiz-Alfonso holds a doctorate from the Facultad de Ciencias de la Educación at the Universidad de Las Palmas de Gran Canaria. She is currently working as a postdoctoral researcher as part of the Juan de la Cierva-Incorporation Programme at the Departamento de Didáctica e Investigación Educativa de la Universidad de La Laguna, funded by the Spanish Ministry of Science and Innovation. Her main line of research focuses on analysing how to improve student involvement and performance through variables capable of being modified, such as the effectiveness of teaching and passion for learning.
Data collected by PlumX Metrics. More information on the metrics collected can be found at https://plumanalytics.com/learn/about-metrics/